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(a) Agent-Guided Generation of Engaging Panoramic 3D Environments.

(b) Generated Compact Scenery in Alpha-Textured Proxies, Supporting Real-Time Rendering on VR Headsets.
Base World: Skybox and Alpha-Textured Terrain Midground Scenery: Plane-based Proxies Foreground Scenery: Template-based Proxies

Textual Input: Create a natural landscape in Autumn / Spring/ Winter.

Output: Photorealistic & Immersive VR Scenes.

Figure 1: ImmerseGen creates panoramic 3D worlds from input prompts by generating compact alpha-textured proxies through
agent-guided asset design and arrangement, alleviating the reliance on rich and complex assets while ensuring diversity and
realism, which is tailored for immersive VR experience.

Abstract
Automatic creation of 3D scenes for immersive VR presence has
been a significant research focus for decades. However, existing
methods often rely on either high-poly mesh modeling with post-
hoc simplification or massive 3D Gaussians, resulting in a com-
plex pipeline or limited visual realism. In this paper, we demon-
strate that such exhaustive modeling is unnecessary for achiev-
ing compelling immersive experience. We introduce ImmerseGen,
a novel agent-guided framework for compact and photorealistic
world modeling. ImmerseGen represents scenes as hierarchical com-
positions of lightweight geometric proxies, i.e., simplified terrain
and billboard meshes, and generates photorealistic appearance by
synthesizing RGBA textures onto these proxies. Specifically, we
propose terrain-conditioned texturing for user-centric base world
synthesis, and RGBA asset texturing for midground and foreground
scenery. This reformulation offers several advantages: (i) it sim-
plifies modeling by enabling agents to guide generative models

in producing coherent textures that integrate seamlessly with the
scene; (ii) it bypasses complex geometry creation and decimation
by directly synthesizing photorealistic textures on proxies, pre-
serving visual quality without degradation; (iii) it enables compact
representations suitable for real-time rendering on mobile VR head-
sets. To automate scene creation from text prompts, we introduce
VLM-based modeling agents enhanced with semantic grid-based
analysis for improved spatial reasoning and accurate asset place-
ment. ImmerseGen further enriches scenes with dynamic effects
and ambient audio to support multisensory immersion. Experi-
ments on scene generation and live VR showcases demonstrate that
ImmerseGen achieves superior photorealism, spatial coherence and
rendering efficiency compared to prior methods. Project webpage:
https://immersegen.github.io/.

∗Both authors contributed equally to this work.
†Corresponding author.

https://immersegen.github.io/
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1 Introduction
Humans have an innate desire to create and inhabit personalized
worlds, whether it’s children building sandcastles or artists design-
ing landscapes. This creative drive extends to digital spaces, espe-
cially in VR/XR applications, where users expect to be immersed in
custom environments with panoramic views, high-fidelity visuals,
and real-time interactions. However, building such immersive 3D
scenes remains challenging. Handcrafted 3D modeling requires
specialized skills and considerable efforts, while recent genera-
tive methods like object-compositional generation[Engstler et al.
2025; Huang et al. 2024; Yao et al. 2025], LLM-powered modeling
tools[Ahuja 2025a] and frameworks[Ling et al. 2025; Liu et al. 2025;
Zhou et al. 2024c], and approximating through 3D Gaussians [Yang
et al. 2024c; Yu et al. 2025; Zhou et al. 2025] often struggle to bal-
ance photorealism with computational efficiency. These approaches
prioritize fully detailed geometry or massive Gaussians to achieve
realism, but often result in overly complex scene representations
that hinder real-time performance on VR headsets, or require hand-
crafted or time-consuming decimation and compression to make
them usable. This raises a key question: is starting from complex
geometry or exhaustive 3D modeling truly necessary to create
immersive VR experiences?

We argue that it is not. In this paper, we propose ImmerseGen,
a novel agent-guided framework that models immersive scenes as
hierarchical compositions of lightweight RGBA-textured geometric
proxies, including simplified terrain meshes and alpha-textured
billboard meshes.

The formulation offers several important advantages:
1) Such modeling paradigm enabling agents to flexibly guide

generative models in synthesizing coherent, context-aware textures
that integrate seamlessly with the panoramic world;

2) Rather than modeling the scene with complex geometry and
then simplifying it, our approach bypasses this process via generat-
ing photorealistic texture directly on lightweight geometric proxies
leveraging SOTA image generators, alleviating reliance on detailed
asset creation and preserving the texture quality without artifacts
introduced in decimation or Gaussian approximations.

3) It delivers compact scene representations that allow real-time
rendering at smooth frame rates, even on standalone mobile plat-
forms such as VR headsets.

To establish this hierarchical paradigm, ImmerseGen first creates
the base layer world, which employs a terrain-conditioned RGBA
texturing scheme on a simplified terrain mesh with user-centric
UV mapping. More specifically, it employs a user-centric texturing
and mapping scheme that synthesizes and allocates higher texture
resolution based on central camera origin, prioritizing primary
viewing area, rather than uniformly covering the entire scene with
limited quality [Engstler et al. 2025; Raistrick et al. 2023b]. Then,
ImmerseGen automatically enriches the environment with genera-
tive scenery assets, which are clearly separated into distinct depth
levels. Midground assets, such as distant trees or vegetation, are
efficiently created using planar billboard textures, while foreground
assets, closer to the user, are generated with alpha-textured cards
placed over retrieved low-poly 3D template meshes. This mech-
anism smartly allocates representation detail, maintaining both
visual fidelity and rendering efficiency at every scale.
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Figure 2: Asset comparison from different sources. We com-
pare assets created by learning-based generative methods
(blue captions) and or artists (green captions). Our generative
RGBD-textured proxy assets achieves better visual details
than existing models [Xiang et al. 2024; Zhang et al. 2024c]
with fewer triangles, delivering realism comparable to artist-
created high-poly or baked assets.

While RGBA-textured proxies simplify asset modeling, assem-
bling coherent 3D scenes still requires manual adjustment and
expert knowledge. To simplify this process, we develop a Visual-
Language Models (VLMs)-based agentic system that interprets user
text prompts into immersive environments. However, directly using
VLMs often face challenges in spatial understanding that hinder
layout accuracy. To address this, we introduce a grid-based seman-
tic analysis strategy, enhancing the spatial comprehension with
coarse-to-fine visual prompt and raycasting-based validation, thus
mitigating placement errors and inconsistencies existing in naïve
VLMs. Moreover, ImmerseGen supplements the immersive expe-
rience by incorporating modular dynamics (e.g., flowing water,
drifting clouds) and ambient audio (e.g., wind, birdcalls), delivering
a fully multisensory environment.

In summary, our contributions are as follows:
1)We propose ImmerseGen, a novel agent-guided 3D environ-

ment generation framework that uses simplified geometric proxies
with alpha-textured meshes to produce compact, photorealistic
worlds ready for real-time mobile VR rendering.

2)Wepropose a novel RGBA texturing paradigm that first synthe-
sizes 8K terrain textures using a geometry-conditioned panorama
generator via user-centric mapping, and then directly generates
alpha-textured proxy assets, avoiding fidelity loss that typically
results from mesh decimation.

3) To automate scene creation from user prompts, we introduce
VLM-based modeling agents equipped with a novel grid-based
semantic analysis, enabling 3D spatial reasoning from 2D observa-
tions and ensuring accurate asset placement. ImmerseGen further
enhances immersion with dynamic effects and ambient audio for a
multisensory experience.

4) Experiments on multiple scene-generation scenarios and live
mobile VR applications show that ImmerseGen outperforms pre-
vious methods in visual quality, realism, spatial coherence, and
rendering efficiency for immersive real-time VR experiences.
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Figure 3: Overview. Given a user’s textual input, our method first retrieve a base terrain and apply terrain-conditioned texturing
to synthesizeRGBA terrain texture and skybox alignedwith basemesh, forming the baseworld. Next,We enrich the environment
by introducing lightweight assets, where VLM-based asset agents are used to select appropriate templates, design detailed asset
prompts and determine asset arrangement within the scene. Each placed asset is then instantiated as alpha-textured assets
through context-aware RGBA texture synthesis. Finally, we enhance multi-modal immersion by incorporating dynamic visual
effects and synthesized ambient sound based on the generated scene.

2 Related works
Agentic Scene Generation. Early efforts in procedural content

generation (PCG) for immersive environments primarily rely on
rule-based systems [Gasch et al. 2022; Lipp et al. 2011; Parish and
Müller 2001; Zhang et al. 2019], where spatial relationships and
asset placements are meticulously defined through handcrafted
rules. Infinigen [Raistrick et al. 2023a] advances this process by
leveraging Blender scripts to orchestrate multiple procedural gen-
erators, enabling the creation of larger and more complex scenes.
However, PCG methods inherently limit adaptability to novel sce-
narios and user-driven instructions. The advent of LLMs and VLMs
introduces a paradigm shift in scene generation, enabling more
intuitive, instruction-based workflows. Recent methods like Blen-
derMCP [Ahuja 2025b] increasingly harness the capabilities of
LLMs to automate the generation process, employing function-
calling agents to interpret textual prompts [Öcal et al. 2024; Yang
et al. 2024b; Zhou et al. 2024b], design scene layouts [Lin and Mu
2024; Sun et al. 2024b], and populate environments [Ling et al.
2025; Zhou et al. 2024c] with assets retrieved from pre-built li-
braries [Ahuja 2025b; Kumaran et al. 2023; Liu et al. 2024, 2025; Sun
et al. 2023; Zhou et al. 2024c]. These systems demonstrate significant
potential in generating diverse, large-scale scenes from high-level
descriptions, streamlining the content creation pipeline. However,
existing LLM/VLM-based approaches rely heavily on asset libraries,
often requiring a trade-off between quality and efficiency. Moreover,
the precision of VLM-guided asset placement often proves insuf-
ficient in complex scenarios. In contrast, ImmerseGen addresses
these limitations by introducing lightweight proxy assets and se-
mantic grid-based arrangement by agents, enabling the creation of
compact, photorealistic worlds.

Learning-based Generation. Recently, learning-based generation
methods have shown promising results in creating 2D and 3D con-
tents [Hong et al. 2023; Rombach et al. 2022; Zhang et al. 2024c;
Zou et al. 2024]. However, unlike 3D object generation that benefits
from diverse object datasets [Deitke et al. 2023; Yu et al. 2023] for

model training, 3D scene generation still faces challenges [Höllein
et al. 2023; Huang et al. 2024; Meng et al. 2024; Wu et al. 2024;
Xu et al. 2024] due to the lack of comprehensive scene-level data
and unified representations. Early methods either learn a genera-
tive neural field with GAN [Chen et al. 2023; Hao et al. 2021; Lin
et al. 2023; Xie et al. 2024] or 2D diffusion priors [Cohen-Bar et al.
2023; Zhang et al. 2024a, 2023b], but fail to produce detailed ap-
pearance. Recently, other lines of work tend to generate images
and lift them to 3D space through depth prediction, combined with
outpainting techniques to expand the scene [Chung et al. 2023;
Fridman et al. 2024; Yu et al. 2025, 2024]. However, these methods
typically produce incomplete 3D worlds (e.g., missing 360-degree
views or geometry under the feet), thus failing to meet the demands
of immersive VR applications. To create a complete surrounding
world, some methods lift the generated panoramic images [Wang
et al. 2024; Zhang et al. 2024d] to 3D space with depth estimation
and inpainting [Yang et al. 2024c; Zhou et al. 2024a, 2025], but
still faces challenges in producing 3D coherent world due to the
inconsistency of novel view inpainting. More recent approaches
utilize video models for 3D scene creation [Gao et al. 2024; Go
et al. 2024; Liang et al. 2024; Sun et al. 2024a], which either suffer
from blurry backgrounds or fail to guarantee fully explorable 360-
degree environments. Additionally, these methods often produce a
large number of point clouds or 3D Gaussians for scene representa-
tion, making it challenging to achieve high-quality rendering while
maintaining reasonable computational costs.

Traditional Asset Creation. Conventional asset creation pipelines
typically follow a two-stage process: detailed geometric model-
ing followed by texture mapping. This modeling-first paradigm is
prevalent in CG content production where artists craft complex
meshes and apply high-resolution textures to achieve visual realism.
However, when deploying such assets in real-time rendering appli-
cation like VR and games, these models are often simplified through
decimation techniques, such as mesh simplification [Li et al. 2018;
Liu et al. 2017], billboard generation [Décoret et al. 2003; Kratt et al.
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Figure 4: Workflow of base world generation. Panoramic
textures for terrain mesh and sky are generated for the base
world. To tame the diffusion model for terrain texturing, we
propose geometric adaption (b) for depth control and user-
centric texture mapping (c).

2014], or level-of-detail (LOD) hierarchies [Huang et al. 2025; Zhang
et al. 2024b], along with baked textures. In natural scenarios, many
works on terrain generation and tree modeling [Lee et al. 2023; Li
et al. 2021] have been proposed, but they often lack diversity and
realism. While effective, this workflow incurs significant manual
effort or computational cost, as it first generates overly detailed
representations only to later reduce them for efficiency. In contrast,
ImmerseGen bypasses this complexity and the need for post-hoc
simplification by directly synthesizing alpha-textured proxy assets
tailored for lightweight rendering, enabling scalable and photoreal-
istic scene generation optimized for immersive applications.

3 Method
We introduce ImmerseGen, an agent-guided framework for gen-
erating immersive 3D scenes from textual prompts. As shown in
Fig. 1, we create the scene in a hierarchical diagram guided by
VLM-based agents. First, we generate a layered environment via
terrain-conditioned texturing, where panoramic sky and RGBA ter-
rain textures are synthesized upon a retrieved terrain mesh (Sec.3.1).
Next, we enrich the scene by placing lightweight mesh proxies and
generating prompt proposals leveraging enhanced agents with se-
mantic grid analysis. The selected assets are then instantiated using
a RGBA texture synthesis scheme (Sec. 3.2). Finally, we augment
the scene with dynamic effects, such as flowing water and ambient
sound, delivering a multisensory experience. Due to page limitation,
we refer readers to the supplementary material for more details.

3.1 Base World Generation
From textual prompts to base terrain. Given a user’s textual prompt

describing the world, we first retrieve a suitable base terrain mesh
from a pre-generated template library. These templates are cre-
ated using procedural content generation tools, followed by post-
processing steps including remeshing, visibility culling, and artistic
captioning to support effective retrieval. Since visual diversity is

primarily introduced through subsequent generative texturing, this
retrieval-based strategy strikes a practical balance between effi-
ciency and variety. To better align with terrain characteristics and
improves diversity, we also use a prompt enhancer extend the user’s
raw prompts with imaginative and contextually relevant details.

Terrain-conditioned texturing. As demonstrated in Fig 4 (a), given
a base terrain mesh and text prompts, we first generate panoramic
sky texture and alpha ground textures upon the mesh. To support
terrain texture synthesis in equirectangular projection (ERP), we
adopt a two-stage training pipeline. We first train a panoramic
diffusion model on ERP data conditioned on textual prompts [Rom-
bach et al. 2022]. Then, we extend this model by training a depth-
conditioned ControlNet [Zhang et al. 2023a], which takes as input
a panoramic depth map DM estimated from a neural depth esti-
mator [Yang et al. 2024a]. During inference, we combine the both
module to generate a panoramic texture I𝑡 that aligns with the
terrain meshM, formulated as:

I𝑡 = U(G(DM ;CGlobal, CRegion)), (1)
whereDM is the conditioning panoramic depth map rendered from
the terrain mesh, G is the conditional diffusion model, C𝐺𝑙𝑜𝑏𝑎𝑙 is
the text prompt for global geographic description, CRegion is the
optional regional prompts for generating designated geographic
feature (such as water body), andU is the conditioned upscaling
model that produces 8K textures to enhance fine-grained details.

To separate the terrain texture and sky texture while maintaining
high resolution, we perform tile-based matting and sky outpainting
on the panorama, which yields 8K fine-grained alpha matte and
pure sky texture guided on the terrain mask. This detailed alpha
matte produces highly detailed landscape visual with low-poly
terrain meshes (such as trees and houses beneath the blue sky).

Depth control with geometric adaptation. While it is technically
plausible to apply conditional diffusion for mesh texturing, we find
it non-trivial to produce 3D-coherent textures that align well with
the terrain and meet immersive standards, i.e., degraded quality as
shown in Sec. 9. This difficulty arises primarily from the domain gap
between the estimated depth for ControlNet training and rendered
metric depth maps for inference-time conditioning. To tackle this
issue, we propose a geometric adaptation scheme that remaps the
rendered metric depth according to better match the domain of
training-time estimated depth. Specifically, we retrieve the most
similar depth map DRetrieve from a sampled training set L using
cosine similarity, and apply a polynomial remapping function:

D̂M = P(DM ;DRetrieve), (2)
where D̂M is the remapped depth, and P is a third-degree poly-
nomial mapping function. Practically, we downsample both DM
and DRetrieve to 32 × 16 resolution to estimate the polynomial co-
efficients, which are then applied to the full-resolution depth map
DM .

Terrain texture mapping. To efficiently texture the terrain with
the generated panoramic texture while preserving visual fidelity,
we precompute a user-centric panoramic UV coordinates for the
terrain mesh, as illustrated in Fig. 4 (c). Thus, the texture can be
directly sampled during the rendering without back-projection or
baking procedures. Specifically, the UV coordinate for each mesh
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vertex can be calculated by transforming the coordinates from
object space to camera space. Given a vertex position in camera
space p = (𝑥,𝑦, 𝑧)⊤, the corresponding UV coordinate u = (𝑢, 𝑣)⊤
on the panoramic texture I𝑡 can be calculated as:

u =

(
1
2𝜋 arctan( 𝑥

−𝑧 ) +
1
2 ,

1
𝜋
arcsin( 𝑦

∥p∥ ) +
1
2

)⊤
, (3)

where ∥p∥ denotes the L2-norm of the vertex position. To prevent
texture stretching at horizontal seams, we detect UVs crossing the
panoramic boundary and offset them for correct wrapping, then
enable texture repeat warping mode for seamless interpolation of
panoramic texture sampling.

To further improve visual fidelity around the user’s viewpoint,
particularly in the polar region where the ERP have severe stretch-
ing, we first adopt an ERP-to-cubemap refinement scheme, using an
image-to-image diffusion method [Meng et al. 2021] to repaint the
bottom area. Then, we partition the mesh by cropping its bottom
area and then reassign UV coordinates of this mesh to directly sam-
ple textures from the bottom map. Additionally, to achieve better
geometric realism, we incorporate a displacement map obtained
from a height estimation model adapted from [Yang et al. 2024a].

3.2 Agent-Guided Asset Generation
To enrich the base world with photorealistic scenery, we then add
more generative 3D assets (such as vegetation) to the scene. Unlike
prior methods that rely on complex modeling pipelines [Décoret
et al. 2003] or off-the-shelf asset retrieval, our framework dynami-
cally generates unique, alpha-textured asset proxies from coarse
templates using generative texture synthesis, thus simplifying asset
creation and enabling more flexible agent-driven design.

Defining proxies by distance. In terms of the distance from the
user and the asset, we use separated proxy types for assets at differ-
ent distance to trade off between quality and performance, which
delivers a realistic appearance that matches the artists’ baked mod-
els while alleviates the cost of baking or decimation. As demon-
strated in Fig. 1 (b) and Fig. 2, for midground objects, since users
cannot perceive detailed depth changes of object surfaces, we syn-
thesize RGBA textures on distant planar mesh (see Fig. 5 (c), a.k.a.
billboard texture). For foreground objects that require stereo im-
pression, we generate alpha textures from template mesh for each

Visual Prompt for Semantic Grid-based Analysis 

: Masked Area : Coarse Position

Coarse-to-fine Arrangement

: Fine Position

Figure 6: The proposed semantic grid-based analysis over-
lays a labeled grid with masked unsuitable regions as visual
prompts, enabling the VLM agent to progressively select grid
cells in a coarse-to-fine manner, enhancing the accuracy and
semantic coherence of asset arrangement.

group of shared materials (such as tree leaves and trunks, see Fig. 5
(b)).

Asset selection and designing. To create diverse and contextually
coherent scenery asset, we develop VLM-based agents to guide the
asset design pipeline. First, the asset selector analyzes the rendered
base world image and user’s textual description to retrieve suit-
able foreground asset templates from an offline-generated library,
e.g., pine trees for mountainous regions or bushes for arid deserts.
Next, the asset designer crafts detailed textual prompts to guide
generative models in synthesizing these scenery assets. In practice,
the designer examines both the generated base-world image and
selected texture templates, and produces detailed descriptions for
each scenery assets (such as categories, season, styles, etc.).

Asset arrangement with semantic grid-based analysis. To ensure
that generative assets are placed in semantically appropriate and
visually plausible locations, we introduce an asset arranger that
analyzes the base world image to produce 2D position candidates,
which are then back-projected to determine 3D positions through
raycasting and validation. One primary challenge for the asset ar-
ranger is to generate reasonable 3D placements based solely on
image-based observation. A naïve approach is to let the agent di-
rectly output the coordinate, which generally results in inaccurate
positions and meaningless layout (see Sec. 4.2) due to the limited
spatial understanding ability to exist models [Yang et al. 2024e].
To address this, we propose a semantic grid-based position pro-
posal scheme, which significantly improves the asset arrangement
quality. As shown in Fig. 6, we overlay the base world image with
a labeled grid and mask out unsuitable regions (e.g., water, sky),
forming a structured visual prompt for the VLM agent. The agent
first selects coarse grid cells given this visual prompt. Then, for
finer placement, each selected cell is zoomed in and subdivided into
sub-grids, from which the agent will select a more precise sub-cell.
The final positions are determined by randomly selecting a point
within the sub-cell.

Context-aware RGBA texture synthesis. Once the agents have
determined the per-asset placement and textual descriptions, we
proceed to instantiate each asset by synthesizing its RGBA texture
in context with the base world. To facilitate seamless integration, we
propose a context-aware cascaded RGBA texture synthesis model
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conditioned on base world background textures, which is inspired
from the layered diffusionmodel [Zhang and Agrawala 2024]. Given
a scenery prompt C𝑠 , the alpha synthesis module G𝑎 first generate
an alpha mask M𝑐 = G𝑎 (C𝑠 ) ∈ R𝐻×𝑊 , serving as a sketch for
subsequent texturing. To incorporate contextual information from
the base world, the RGB base texture reference I𝑏 ∈ R𝐻×𝑊 ×3 is in-
jected into an initially empty RGBA canvas through alpha blending
guided by M𝑐 . Then the texture synthesis module G𝑖 generates an
initial scenery texture from the alpha-blended reference with the
alpha maskM𝑐 . Note that the generated texture usually produces
detailed boundary that is not perfectly aligned with the given alpha
mask. Thus, the alpha channel of the initial texture is further refined
through an diffusion based refinement module R. The full process
to generate final scenery texture I𝑠 ∈ R𝐻×𝑊 ×4 is formulated as:

Is = R (G𝑖 (M𝑐 , I𝑏 ;C𝑠 )) . (4)

For foreground scenery that already contains an alpha channel in
its template model, we directly reuse its alpha as M𝑐 to ensure the
correct structure.

3.3 Multi-Modal Immersion Enhancement
To further enhance immersion beyond static 3D visuals, we intro-
duce agent-guided multi-modal enhancement in visual dynamics
and sounds (see the right part of Fig. 3).

Dynamic Shader-based Effects. We utilize VLM to analyze the
scenery component of generated scene, and add shader-based dy-
namic effects for natural elements such as flowing water, drift-
ing clouds, and falling rain. These effects are implemented using
customizable shader parameters, including procedural flow maps,
noise-based motion textures, and screen-space animations, which
bring liveliness to the scene while maintaining real-time perfor-
mance.

Ambient Sound Synthesis. We synthesize ambient sounds using
a library of natural soundtracks tagged by content. Specifically, we
analyze the rendered panorama of the complete scene and retrieve
suitable natural soundtracks (such as birds, winds, and water) from
the library. To support uninterrupted playback, we apply crossfad-
ing to seamless mix soundtracks for audio looping.

4 Experiments
4.1 Comparison on Scene Generation

Baselines. We compare our method with recent scene generation
methods across different categories: (1) Infinigen [Raistrick et al.
2023b], which uses procedural generation with physics-based mod-
eling; (2) DreamScene360 [Zhou et al. 2025], which lifts panoramic
images to 3D space; (3) WonderWorld [Yu et al. 2025], which gener-
ates scenes through perspective outpainting. (4) LayerPano3D [Yang
et al. 2024d], similar to DreamScene360, but adopts a layered repre-
sentation. For a fair comparison, we use Infinigen’s scene configu-
rations that match the same category with our generated scenes,
adopt the same text prompts with us for DreamScene360 and Lay-
erPano3D, and use the cropped perspective images from our gener-
ated panorama as the image condition for WonderWorld.

Table 1: We perform quantitative comparison on the gener-
ated 3D scenes, and compare the complexity of representa-
tion (primitive count) and runtime performance (FPS) on VR
devices.

Methods Quantitative Metrics Complexity & Perform.
CLIP-Score ↑ CLIP-Aesthetic ↑ QA-Quality ↑ Prim. Count ↓ FPS ↑

Infinigen - 4.9546 3.0426 1276k ∼7
WonderWorld 27.0417 5.0116 2.6298 1632k ∼14
DreamScene360 29.3556 4.8283 2.1446 2097k ∼8
LayerPano3D 29.4633 5.1513 3.4812 14577k N/A
Ours 28.8933 5.4834 3.5445 223k ∼79

Metrics. For comprehensive comparison with the above methods,
we use metrics for evaluating both prompt-scene consistency and
aesthetic quality, including CLIP similarity score (CLIP-Score) [Rad-
ford et al. 2021], aesthetic score (CLIP-Aesthetic) [Schuhmann 2023]
and the VLM-based visual scorer Q-Align (QA-Quality) [Wu et al.
2023].

Quantitative results. We present the quantitative comparison of
our method with the baselines in Tab. 1. As shown in Tab. 1, our
method outperforms all baselines in CLIP-Aesthetic score and QA-
Quality, demonstrating the superior visual quality of our generated
scenes. For CLIP-Score, DreamScene360 and LayerPano3D also
show a competitive score, since they minimize semantic loss during
training while our method generates diverse textures that better
extends users’ prompt (e.g., various geographic feature instead of
bare ground, see Fig. 7).

Qualitative results. We visualize the qualitative comparison re-
sults in Fig. 7, where we both show the panoramic view and the
rendered perspective views. For Infinigen, since it mainly uses lim-
ited procedural generators with randomized parameters, restricting
its visual diversity and semantic coherence (e.g., the ice floes in
the first row are monotonous, and the green trees in the last row
are not aesthetically compatible with the entire scene). For Dream-
Scene360, although it achieves consistent views with a panoramic
lifting strategy, it lacks diverse scenery contents and also shows
blurry artifacts (see the slanting floaters at the perspective view
from the second and third row in Fig. 7) due to the instability of
inpainting-based optimization and the limited resolution of 3D
Gaussians. For WonderWorld, since it relies on outpainting to gen-
erate a complete world, it cannot ensure view consistency across
different views and results in fragmented scenes.

LayerPano3D produces aesthetic and consistent results with
DiT-based panorama generator, but is prone to blurry artifacts and
obvious gaps at the layer boundary. By contrast, our method builds
up the world with hierarchical alpha-textured proxies while con-
sidering the 3D coherence with agent-guided modeling, preserving
consistent quality across views and delivering immersive scenery
content.

We provide more examples of generated nature environments
in Fig. 8.

User study. We conduct a user study to compare our method
with others on the 18 generated scenes. We omit the comparison
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Infinigen DreamScene360 WonderWorld OursLayerPano3D

Figure 7: We compare our method with Infinigen [Raistrick et al. 2023a], DreamScene360 [Zhou et al. 2025], WonderWorld [Yu
et al. 2025] and LayerPano3D [Yang et al. 2024d] based on the generated 3D scenes using identical text prompts, visualizing
both panoramic and perspective views of the generated scenes.

Table 2: We perform user studies on the generated 3D scenes.

Method Perceptual Qual. ↑ Realism & Coherence ↑ Textural Align. ↑
Infinigen 7.12% 5.83% 6.04%
WonderWorld 13.46% 7.50% 11.49%
DreamScene360 24.01% 33.89% 38.22%
Ours 55.41% 52.78% 44.25%

with LayerPano3D since it produces massive primitives that hinder
VR rendering.

We gathered 50 participants, of whom 33 people have profes-
sional backgrounds in graphics or 3D modeling. Participants are
asked to select their preferred scenes based on three aspects: Percep-
tual Quality, Realism & Coherence, and Textual Alignment. Ratios
of preferred scenes for each method were calculated. As shown in
Tab. 2, users consistently prefer our method over other baselines
across all aspects, demonstrating the superior visual quality and
textual alignment of our method.

Complexity of Representation and Runtime. We compare the com-
plexity of scene representation and runtime performance on VR
devices (Snapdragon XR2 Gen 2 platform). We calculate the average

primitive counts and FPS of all scenes for each method. As shown
in Tab. 1, methods using 3D Gaussians as representation (Dream-
Scene360 and WonderWorld) generally achieve only 8-14 FPS even
with foveated rendering, and scenes generated by LayerPano3D fail
to launch on VR devices.

For Infinigen, since it generates a detailed world with intricate
procedural geometry and materials from generators, it remains
computationally expensive for real-time rendering.

In contrast, our method maintains a compact representation
while preserving scene quality, achieving an average FPS of 79+ on
VR devices.

4.2 Ablation Studies
Geometric Adaptation. We first analyze the geometric adapta-

tion strategy for projected terrain depth and fine-tuning of the
conditioning network in terrain-conditioned texturing (Sec. 3.1).
By ablating both strategies, the generated terrain texture fails to
produce a plausible ground texture (water area on the bottom in
Fig. 9 (a)). By enabling fine-tuning, the terrain texture precisely
reflects the ground but with a monotonous appearance (see Fig. 9
(b)). By enabling geometric adaptation, the ground texture shows
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Figure 8: We present more examples of generated environments in panoramic and perspective views.

(a) w/o Both (b) w/o Geometric Adaptation (c) w/o Fine-tuning (d) Ours

Figure 9: We analyze the geometric adaptation and fine-tuning of the conditional network for terrain-conditioned texture
generation.

(a) Random Layout (b) Layout by LLM (c) Layout by Naïve VLM (d) Ours

Figure 10: We inspect the efficacy of semantic grid-based analysis of our asset arranger by comparing it with random layout,
LLM-based layout and naïve VLM-based layout.

more detail (rocks on the bottom in Fig. 9 (c)). By enabling all the
strategies, we can obtain terrain texture with fine-level details and
natural world structure (see Fig. 9 (d)).

Semantic grid-based analysis. We then evaluate the efficacy of
the proposed semantic grid-based analysis for the asset arranger
(Sec. 3.2). Specifically, we compare our method with different strate-
gies, including random layout generation, LLM-based generation
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(a) w/o Both (b) w/o Foreground Scenery

(c) w/o Midground Scenery (d) Ours

Figure 11: We analyze the contribution of different scenery
by ablating proxy scenery of different types.

Table 3: We perform the ablation study on the aesthetic im-
provement of adding proxy assets.

w/o Both Assets w/o Midground Assets w/o Foreground Assets Ours
QA-Aesthetic ↑ 2.1143 2.3287 2.3562 2.4408
CLIP-Aesthetic ↑ 5.1540 5.3307 5.2453 5.3634

that outputs object coordinates directly, and naïve VLM-based gen-
erator that receives unmodified base world images. As shown in
Fig. 10, the output of random layout incorrectly places trees on the
lake (Fig. 10 (a). The layout generated by generic LLM and naïve
VLM improves the coherence by providing compatible texture de-
scriptions and plausible coordinates, but still suffers from inappro-
priate placements. By using semantic grid-based visual prompts as
input for the VLM, our method generates a pleasant scene compo-
sition while addressing the placement issue.

Aesthetic Contribution with Proxy Scenery. Wealso investigate the
aesthetic contribution when adding generated proxy scenery into
the base world. Specifically, we randomly select 10 generated scenes
and remove midground or foreground assets for rendering, and
then evaluate the aesthetic metric in Tab. 3 and visualize in Fig. 11.
As shown in Tab. 3 and Fig. 11, the added scenery significantly
improves the QA-Aesthetic [Wu et al. 2023] and CLIP-Aesthetic
score and visual quality by enriching the base world with diverse
elements and improving 3D volumetric impression.

Please refer to the supplementary material for more experiments.

5 Conclusions
We have presented ImmerseGen, a novel framework for generating
photorealistic 3D environments from lightweight geometric prox-
ies tailored for immersive experiences. The proposed generative
terrain-conditioned texturing and alpha-textured scenery synthesis
eliminate the need for rich and complex geometry to create diverse
scenes, while the VLM-based world agents guide the entire pipeline
in asset selection, design and arrangement, and multi-modal immer-
sion enhancement. Our method creates coherent natural worlds
while maintaining efficient real-time rendering on mobile platforms.

Limitations and future work. First, our method focuses on out-
door scenes instead of man-made indoor scenes with detailed furni-
ture. Second, our output scenes are currently restricted to a limited
exploration range (typically around 50 squared meters) due to the
fixed generation levels in terms of viewing distance. This could be
addressed by incorporating video-based inpainting techniques [Gu
et al. 2025] for extensible generation during exploration in future
work. Third, our approach relies on pre-built templates for fore-
ground object geometry, which could be enhanced by integrating
procedural generators [Inc. 2024] with LLMs to enable the creation
of more diverse templates.
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Supplementary Material
In this supplementary material, we describe more details of our
method in Sec. S1. Besides, we also conduct more experiments in
Sec. S2. More qualitative results can be found in our supplementary
video.

S1 Implementation details
Base framework. We utilize Blender [Ton Roosendaal 2024] as

our core scene modeling framework, which serves as a unified
platform for the entire generation pipeline, enabling seamless inte-
gration of key processes including terrain texture projection, asset
placement, scene rendering, and VR-ready scene export. For au-
tomated modeling, we develop world modeling agents powered
by GPT-4o, which orchestrates multiple tasks: selecting base ter-
rains from the library, generating scene-level and object-specific
prompts, implementing precise asset placement through semantic
visual prompts, and enriching scenes with multi-modal elements
including dynamic shader effects and contextually relevant ambient
sound.

Construction of base terrain library. To build the base terrain
library, we first utilize Blenders’ A.N.T. Landscape to create a diverse
collection of initial terrains. These terrains are filtered and labeled
to ensure high quality and compatibility for our world generation
task.

Regional prompts for specific landscape elements. To integrate spe-
cific landscape elements like lakes at desired locations, we employ
regional prompts [Li et al. 2023] to guide the texture generation pro-
cess. For terrains containing water bodies, we generate a panoramic
water mask by rendering the terrain’s water regions. This mask
enables targeted texture synthesis, where water-specific prompts
are applied to designated areas while maintaining natural ground
textures in the remaining regions. The resulting textures seamlessly
blend water features with the surrounding terrain.

Terrain-conditioned texturing. Our terrain-conditional diffusion
model builds upon the base model from Stable Diffusion XL [Podell
et al. 2023]. The base model is fine-tuned on 10K equirectangular
terrain images collected from UE scene rendering and the Internet,
with a learning rate of 0.00001 for 30K steps and batch size 4. For
terrain texture control, we train a panoramic depth-conditioned
ControlNet [Zhang et al. 2023a] using depth maps generated by
Depth-Anything V2 [Yang et al. 2024a] and Midas [Birkl et al. 2023].
Random scale and shift augmentations are applied to the depth
during training to improve the control robustness. To achieve high-
resolution 8K output, we implement a tile-based generation ap-
proach inspired by [Bar-Tal et al. 2023], with circular padding to
ensure seamless connection between the leftmost and rightmost
edges of the panorama [Feng et al. 2023; Zhang et al. 2024e]. We
adopt Powerpaint [Zhuang et al. 2023] for sky outpainting with the
projected mesh mask. For the remaining ground textures, we apply
matting to refine boundary details using VitMatte [Yao et al. 2024].
To improve the detail For matting of large panoramas, we develop
a tile-based matting strategy similar to [Bar-Tal et al. 2023], where
trimaps are constructed through dilation and erosion of projected
mesh masks.

In order to fully exploit the capabilities of text-to-image gen-
erative models, a Large Language Model (LLM) agent based on
GPT4o is employed as a prompt engineer. This agent enhances the
user’s original prompt by adding appropriate details and stylistic
descriptions, based on basic instructions and illustrative prompt
examples.

For user-centric panoramic UV mapping, triangles whose UV-
space vertices lie at opposite horizontal edges of the panoramic
texture map cause obvious texture stretching, because interpola-
tion occurs across the interior of the image rather than across the
intended panoramic boundary. To address this, we first detect tri-
angles whose UV coordinates span horizontally across the texture
boundaries, and adjust their UV coordinates by offsetting values
outside the original texture extent. We then enable texture repeat
wrapping mode to properly interpolate texture coordinates, ensur-
ing seamless and correct panoramic sampling.

Details of world modeling agents. We show system prompt exam-
ples for the world modeling agents—including the asset selector,
asset designer, asset arranger, and immersive enhancer—in Fig. S7,
Fig. S8, and Fig. S9. The number of assets for the selector and ar-
ranger agents is set within a range of 5–10, determined adaptively
by the agents based on different environments to achieve a balance
between efficiency and diversity. Foreground scenery distances are
configured within 2–10 m, while midground distances range from
20–50 m. Regions unsuitable for asset arrangement are masked
using Grounded SAM [Ren et al. 2024].

Design of dynamic shaders. We implement three dynamic shader
effects to enhance the realism of our natural environments. These
effects are exposed as functional parameters that can be added by
our immersive agent. Cloud Movement: The cloud movement uses
a flow map to define overall cloud movement direction, combined
with a noise texture where the R channel stores low-frequency
noise for large-scale disturbances and the G channel stores high-
frequency noise for detailed variations, creating layered cloud dy-
namics. Screen-Space Rain: The rain effect uses a spindle-shaped
volume covering the camera range, with three baked textures. The
depth map stores raindrop depth information across three channels
(R: 0-5m, G: 5-10m, B: 10-15m), while the alpha map defines rain-
drop shapes and transparency, and the normal map enables light
refraction simulation. This is combined with a panoramic depth
map for scene interaction, with UV scrolling controlling the falling
speed of three raindrop layers. Water Ripples: Using a procedurally
generated texture with four channels - the R channel controls rip-
ple propagation distance, the G and B channels store X and Y-axis
normal gradients respectively, and the alpha channel contains ani-
mation time offset. Four layers of ripples are combined with a decay
function to create natural-looking water surface interactions.

Ambient sound synthesis. Our ambient sound system builds upon
a curated library of natural soundtracks labeled with descriptive
tags. During 3D scene generation, we employ GPT-4o to analyze
the panorama rendered from the complete world, and select up to
three most appropriate audio tracks that match the scene’s visual
elements and atmosphere. The VLM also determines suitable vol-
ume levels for each track based on their relative importance to the
scene. To ensure seamless playback in the immersive experience,
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(a) Panoramic Texture 
with Sky and Ground

(b) Original Matting (c) Tile-based Matting
(1K) (8K)

Figure S1: We compare the original matting and tile-based
matting.

we process the selected tracks with smooth crossfade transitions
between their endings and beginnings, enabling continuous looping
without noticeable interruptions.

Bottom map enhancement with repainting and displacement. To
improve both geometric and appearance detail in foreground ex-
plorable areas, we implement a bottom map refinement scheme
through texture repainting and displacement mapping. Specifically,
we create a dedicated UV map from a top-down perspective of
the terrain, and refine it using image-to-image translation with
ControlNet Tile model [Zhang et al. 2023a]. The refined texture is
seamlessly blended back into the main terrain texture, ensuring
smooth transitions while maintaining high-resolution details in
explorable areas. For geometric enhancement with displacement,
we estimate depth [Yang et al. 2024a] from the top-down view and
apply a high-pass filter to isolate fine-scale height variations, gener-
ating a displacement map that adds detailed rocky texturing to the
terrain surface. This combined texture and displacement refinement
significantly improves the visual fidelity of ground-level areas that
users directly interact with.

Context-aware RGBA texturing for proxy assets. The alpha synthe-
sis and refinementmodules are adapted fromLayer Diffusion [Zhang
and Agrawala 2024] with text-based and image-based conditioning,
respectively. To further enable context-aware texture generation,
we integrate PowerPaint [Zhuang et al. 2023] for better visual qual-
ity and context coherence.

Efficient light baking for photorealism. To optimize performance
while maintaining visual quality, we implement a panoramic light
baking process. Specifically, we render a high-resolution panoramic
shadowmap of the entire scene. This map is then efficiently sampled
using pre-calculated UV coordinates during runtime, eliminating
the need for real-time lighting on VR applications. To this end, we
export the entire environment to Unity using unlit materials while
preserving photorealistic shadow effects.

Table S1: Ablation study of terrain-control texture generation

w/o both w/o Geo. Ada. w/o Fine-tuning Ours
QA-Quality ↑ 3.6938 3.7630 3.7614 3.9057

(a) Infinigen

(b) Easi-Tex

(c) Meshy.AI

(d) Ours

Figure S2: We compare our method with other SOTAs on
terrain texturing.

Execution time for scene generation. We deploy our scene genera-
tion pipeline on a single NVIDIA RTX 4090 graphics card. The base
world generation including terrain texture synthesis and projec-
tion takes about 3 minutes. The proxy asset arrangement process
requires about 10 seconds per asset, and the layout generation
(semantic grid-based analysis for hierarchical arrangement) of as-
set arranger takes about 1 minute. The Immersive enhancements,
including ambient sound integration and dynamic shader effects,
are accomplished within 1 minute. The final post-processing stage,
which includes panoramic light baking and scene asset export for
game engines (Unity), requires 1-2 minutes.

S2 More Experiments
S2.1 Comparison on Terrain Texturing
We provide qualitative and quantitative comparisons on terrain
texturing with other SOTA works in Tab.S2 and Fig.S2. Our method
achieves better result among the PCG-based generation framework
Infinigen[Raistrick et al. 2023b], diffusion-based texturing model
Easi-Tex[Perla et al. 2024] and commercial mesh texturing tools
Meshy.AI[Meshy 2025].
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Table S2: Quantitative Comparison on Terrain Texturing

Method Type CLIP-Aesthetic ↑ QA-Quality ↑
Infinigen Procedural 5.2937 2.9091
Easi-Tex Generative 4.8599 2.9242
Meshy.AI Commercial 4.8750 3.2685
Ours Generative 5.4317 3.4860

Background Layer Diffusion OursLayer Diffusion
(background conditioned)

Alpha Matting Layer Diffusion
(foreground extraction)

Ours

(a) Comparison on texture coherence.

(b)  Comparison on alpha quality.

Figure S3: We compare the RGBA texture synthesis with
other methods.

S2.2 Extended Ablation Study of
Terrain-Conditioned Texture Generation

In Tab. S1, we present the metric analysis of terrain-conditioned
texture generation by ablating geometric adaptation for depth con-
ditioning and fine-tuning the controlling network. Specifically, we
evaluate the QA-Quality metrics for rendered sequences of the
generated base world with different configurations. The results
demonstrate that when either geometric adaptation or fine-tuning
is absent, the quality of the generated texture drops, highlight-
ing the design of terrain-conditioned texturing in maintaining the
quality of the generated scenes.

S2.3 Improvement of Tile-based Matting.
Our tile-based matting strategy significantly improves alpha matte
details on large panoramic images. As shown in Fig. S1, this ap-
proach enables us to achieve crisp, detailed silhouettes of vegetation
and structures against the sky, even when rendering low-poly ter-
rain meshes from distant viewpoints. The enhanced alpha matte
quality is particularly evident in the clear delineation of tree lines
along mountain ridges and house contours.

S2.4 Improvement of Bottom Map
Enhancement

We demonstrate the improvement in geometric details and texture
quality achieved through the proposed bottom map displacement

(c) w/o Bottom Repainting (d) w/ Bottom Repainting

(a) w/o Bottom Displacement (b) w/ Bottom Displacement

Figure S4: We show the enhancement of bottom view before
and after repainting and displacement.

Table S3: Quantitative Evaluation of Layout Generation

Method Random layout LLM Naïve VLM Ours
CLIP-Aesthetic ↑ 5.4963 5.5212 5.5350 5.5739

repainting in Fig.S4. As shown in the first row of Fig.S4, after per-
forming displacement, the terrain exhibits enhanced geometric
details with more pronounced rocky textures and surface varia-
tions. As shown in the second row of Fig.S4, after repainting, the
stretching and artifacts present in unobserved or distant areas are
replaced with new content, notably enhancing the overall visual
quality.

S2.5 Comparison of RGBA Texture Generation
We compare the generated RGBA texture from our method with
those produced by the layer-based diffusion model [Zhang and
Agrawala 2024]. As shown in Fig. S3 (a), our generated assets demon-
strate greater consistency with the background. This improvement
can be attributed to our disentangled generation of color and the
alpha channel, allowing for more precise and coherent integration
of the assets into various backgrounds. Unlike the layer-based diffu-
sion model, which undesirably attempts to modify the background
itself, our approach inpaints only the masked area according to the
background, thereby preserving consistency and yielding diverse
content.

As shown in Fig. S3 (b), our alpha refinement approach produces
higher quality alphamattes compared to alternativemethods. Direct
alpha cropping via inpainting masks tends to include unwanted
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(a) Our Panoramic 
View

(c) Ours method(b) DreamScene360

(Used as 
DreamScene360’s 

Image Input)

Figure S5: We compare our method with Dream-
Scene360 [Zhou et al. 2025] using panoramic images
from our resulting world.

background regions, while foreground extraction using layer-based
diffusion models like [Zhang and Agrawala 2024] can excessively
modify the original content. In contrast, our method preserves
asset details while achieving clean separation from the background
through precise alpha channel refinement.

S2.6 Extended Ablation Study of Different
Layout Generation

We present the quantitative comparison results of the different
layout generation strategies in Tab. S3. We compare the average
CLIP-Aesthetic scores [Schuhmann 2023] of rendered panoramas
from scenes generated by different layout generation strategies
discussed in Sec 4.3. For each strategy, we fix the base world and
generate 10 scenes for comparison. As shown in Tab. S3, our layout
generator outperforms all the other competitors, demonstrating
the efficacy of the proposed semantic grid-based visual prompt for
improving the placement quality.

S2.7 3D Gaussian Lifting with Our Panoramic
Image.

To further analyze the quality of 3D Gaussian lifting for 3D scene
generation, we also conduct an extended experiment by training
DreamScene360 [Zhou et al. 2025] on the same panorama image
from our resulting world. As shown in Fig.S5, the result of Dream-
Scene360 produces noticeable artifacts and much lower fidelity than
ours. This also results in lower metrics, as reported in Tab. S4, indi-
cating its limitations in representing high-quality scenes compared
to our proxy mesh-based representation.

S2.8 More Examples of Extended Styles
In Fig. S6, we present examples of scenes generated by our method
in a variety of extended styles beyond the realistic setting by adding
prompts related to these styles, including a futuristic city, anime-
inspired nature, and a fantasy gaming world. Although our method
does not specifically design for such styles, we can still achieve
enchanting generation results in Fig. S6, demonstrating the gener-
alizability of our approach.

Table S4: Comparison with DreamScene360 using Same Im-
age

Method CLIP-Score ↑ CLIP-Aesthetic ↑ QA-Quality ↑
DreamScene360 28.2111 4.8748 2.2975
Ours 28.7806 5.3289 3.2066
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Figure S6: Examples of Generated Scenes in Extended Styles
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You are a professional 3D designer skilled in Geography, Botany, and Aesthetics. 

Your task is to analyze a panorama image of a nature scene and determine suitable objects to add 
from a provided JSON (objects list).        

INPUT:
A list of objects in JSON format, where each element includes type, id, and description:
```json    
{list}
```

OUTPUT:
A JSON array where each selected object is in the same format as the input.
- Includes a new "reason" field, explaining the rationale behind your selection choices.

FORMAT:
```json
[
  {{"type": "tree", "id": 1, "description": "pine tree', 'reason': '...'}},
 ...
]
```

INSTRUCTIONS:
- Analyze the panorama image to determine the season, soil, and terrain features.
- Select suitable objects based on the analysis.
- The exact number of objects to select will be specified by the user.

Asset Selector

You are a professional 3D designer specialized in modeling, visual aesthetics.

Your task involves analyzing a provided panoramic image and enhance relevant and visually fitting 
details for each asset provided in the input JSON (objects list).

INPUT:
You will receive a panoramic image and a JSON list of assets/objects.

OUTPUT:
Return a JSON array containing one structured object per selected asset.
- Contains an enriched "description" field, detailing visual and aesthetic features based on your 
analysis (e.g., size, color, texture, shape, season).
- Includes a new "reason" field, explaining the rationale behind your design choices (e.g., how the 
enhancement contributes to cohesiveness or relevance within the scene).

EXAMPLE:
```json
[
  {"type": "tree", "id": 1, "description": "pine tree, autumn-season foliage, tall, conical shape, 
warm orange-brown hues", "reason": "..."},
  ...
]
```

INSTRUCTION:
1. Analyze the provided panoramic image, looking carefully at visual and aesthetic properties such 
as season, color tone, environmental context.

2. For each asset in the provided JSON list, determine the most suitable and visually consistent 
details based on your image analysis.

Asset Designer

Figure S7: Prompt Examples for Agent Selector and Designer.
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You are a professional 3D designer skilled in Geography, Botany, and Aesthetics. 
Given a panorama of a nature scene, your task is to analyze the scene and determine suitable positions to plant some 
objects. 
The panorama is overlaid with green grids and labeled from 1 to 6 for rows and A to L for columns.
You are required to select cells in the panorama for each object.

INPUT:
A list of objects in JSON format, where each element includes type, id, and description.

OUTPUT:
A JSON array, containing the selected cells for each object. 
Each element should contain the object information same as input, with added selected cells and reasons for choosing 
each cell.

FORMAT:
    ```json
    [{{
        "id": 3,
        "type": 'leaves',
        "description": 'Fallen leaves, autumn',
        "cells": ['A6', 'C6', ...],
        "reasons": '...'
    }},...
    ]
    ```

GUIDELINES:
- Identify Features in the Scene:
    Analyze the terrain for flat or slightly sloped areas that can support plants.
    Detect existing vegetation to ensure a natural distribution of the new plants.
    Spot water sources such as lakes, rivers, or streams, as plants generally thrive near water.
    Avoid rocky areas and densely forested regions.
- Consider Distribution:
    Ensure plants have sufficient spacing for healthy growth.
    Create clusters in certain areas while maintaining sporadic spacing in others.
- Aesthetic and Ecological Factors:
    Enhance visual appeal by breaking symmetry.
    Consider biodiverse planting to support wildlife.

Coarse Arranger

You are a professional 3D designer skilled in Geography, Botany, and Aesthetics. 
Given some images of a nature scene, your task is to analyze the scene and determine suitable positions to plant 
some objects. 
The images are overlaid with green grids and labels. The green labels are image cell label and the small red labels 
inside grids are sub-cell labels.
You are required to select sub-cells in the image for each object.

INPUT:
    An array of objects in JSON format, where each element includes type, id, and description and selected cell 
labels.
    
OUTPUT:
    An array of JSON. Each element contains object information and selected cells and sub-cells.
    The cells is a nested JSON object, the key is the cell label corresponding to the input, and the value is a json 
object with the selected sub-cell label as key and reasons to choose each sub-cell as value.

FORMAT:
        ```json
        [{
            "id": 3,
            "type": 'Small',
            "description": 'Fallen leaves, autumn',
            "cells": {'A6': {'F5': 'reason'
                            'A7': '...'},
                    'K5': {'H6': '...',
                            'B8': '...'},
                    ...},
        },
        ...]
        ```

GUIDELINES:
- Identify Features in the Scene:
    Analyze the terrain for flat or slightly sloped areas that can support plants.
    Detect existing vegetation to ensure a natural distribution of the new plants.
    Spot water sources such as lakes, rivers, or streams, as plants generally thrive near water.
    Avoid rocky areas and densely forested regions.
- Consider Distribution:
    Ensure plants have sufficient spacing for healthy growth.
    Create clusters in certain areas while maintaining sporadic spacing in others.
- Aesthetic and Ecological Factors:
    Enhance visual appeal by breaking symmetry.
    Consider biodiverse planting to support wildlife.

Fine Arranger

Figure S8: Examples of Prompts for Agent Arranger (including coarse arranger and fine arranger).
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You are a professional 3D designer with expertise in geography and meteorology. Given the provided scene panoramic 
image, first analyze and determine the environmental conditions amd then provide optimal parameter values for 
realistic nature animation effects (including water, clouds, and rain) that best represent the observed 
environmental conditions.
Refer to the following parameter descriptions of effects:
[
    ["Rain_Speed",
     "Scroll speed of the rain texture over time",
     "[0.0, 10.0]",
     "Provide clearly reasoned and realistic suggestions based on observation"],

    ["Water_RippleTiling",
     "Scales UV coordinates to control ripple density. Lower values produce fewer, larger ripples.",
     "[0.01, 10.0]",
     "1.0: standard ripple scale\n0.5: double ripple size (fewer but larger ripples)\n2.0: dense, smaller ripples"],

["Bird_Density",
     "Controls the density of birds visible in the scene.",
     "[0.0, 1.0]",
     "0.0: no birds\n0.25: occasional birds\n0.5: moderate bird presence\n1.0: dense flocking birds"],

...
]
OUTPUT:
Present your answer strictly in the following structured JSON format:
Suggested parameters as nested JSON, where each parameter includes a "value" and a textual "reason" clearly 
explaining your parameter choice.

INSTRUCTION:
1. You should determin the parameter by inferring the enviroment instead of simply identify visible elements since 
the image contains only basic terrain. 

EXAMPLE:
```json
{{
        "Water_RippleTiling": {{
            "value": 1.3,
            "reason": "..."
        }},
        ...
}}
```   

Effect Agent

You are a professional scene audio designer. Your task is to select suitable ambient soundtracks from an existing material 
library to mix audio that matches the given scene image.

You can choose one or multiple audio files from the existing library for mixing.
For instance, if a single audio file suffices for the scene, you can use just that. However, if the scene is more complex, 
multiple audio files will be needed for mixing.

Below is our audio library, where the file names represent the potential audio content.

{
AUDIO_LIST_PLACEHOLDER
}

Now, based on the provided panoramic image, you need to first describe the scene, and then give a corresponding audio mixing 
plan (including audio file names and volume information) and provide explanations or reasons.

Note:
1. Usually, 1-3 tracks are enough for a scene. Too many repetitive bird calls might be confusing.
2. The audio file names need to match the file names in the audio library, otherwise, the corresponding audio files cannot be 
found.

Example of output:
```
{
    "scene_description": "This scene is a forest scene, containing elements such as trees, water, etc., with an overall 
atmosphere of tranquility and mystery.",
    "audio": [
        {
            "filename": "night_wind_in_forest_V2.wav",
            "volume": 0.5,
            "descriptions": "This audio features the sound of wind in a jungle at night, suitable for conveying the tranquility 
and mystery of the given jungle scene."
        },
        {
            "filename": "rainy_V2.wav",
            "volume": 0.5,
            "descriptions": "This audio features the sound of rain, suitable for conveying the dampness and chill of the given 
scene."
        }
    ]
}
```

Sound Agent

Figure S9: Prompt Examples of effect agent and sound agent for immersion enhancement.


	Abstract
	1 Introduction
	2 Related works
	3 Method
	3.1 Base World Generation
	3.2 Agent-Guided Asset Generation
	3.3 Multi-Modal Immersion Enhancement

	4 Experiments
	4.1 Comparison on Scene Generation
	4.2 Ablation Studies

	5 Conclusions
	References
	S1 Implementation details
	S2 More Experiments
	S2.1 Comparison on Terrain Texturing
	S2.2 Extended Ablation Study of Terrain-Conditioned Texture Generation
	S2.3 Improvement of Tile-based Matting.
	S2.4 Improvement of Bottom Map Enhancement
	S2.5 Comparison of RGBA Texture Generation
	S2.6 Extended Ablation Study of Different Layout Generation
	S2.7 3D Gaussian Lifting with Our Panoramic Image.
	S2.8 More Examples of Extended Styles



